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ANALYTIC MODEL OF ION EMISSION FROM THE FOCUS OF AN
INTENSE RELATIVISTIC ELECTRON BEAM ON A TARGET

George J. Caporaso and Y u-Jiuan Chen
Lawrence Livermore National Laboratory, Livermore, California 94550 USA

Abstract

Advanced radiographic systems for stockpile
stewardship require very small x-ray sourcesto achieve the
required resolution. Focusing multi-kiloampere beams to
diameters on the order of 1 mm onto a Bremsstrahlung
target leads to the generation of axial electric fields on the
order of several MV/cm which act to extract ions out of
the surface plasma and accelerate them upstream into the
beam. These backstreaming ions act as a distributed
electrostatic lens which can perturb the focus of the
electron beam in a time varying manner during the pulse.
An analytic model of the ion extraction is presented for a
particular target geometry along with scaling laws for the
perturbation of the focal spot.

1 INTRODUCTION

High resolution x-ray radiography requires the
production of a small (=1 mm diameter) spot on the
surface of a Bremsstrahlung converter target by a
relativistic electron beam of at least several kiloamperes
[1]. A mechanism that might possibly disrupt the focal
spot was proposed by D. Welch [2]. Bombardment of the
target by a high power electron beam would lead to the
rapid formation of a surface plasma. A large axial electric
field would appear at the surface due to the charge
redistribution on the target arising from cancellation of the
beam'’s radial electric field. This axia field would expel
the ions into the beam. These backstreaming ions would
acquire energies on the order of the space charge depressed
potential of the beam and would propagate upstream at
very high speeds where they would act as an electrostatic
focusing lens. The focusing due to these moving ions
would cause the electron beam to pinch upstream of the
target and then rapidly diverge. The result would be a spot
size that would rapidly increase in time at the converter
target.

An analytic model is presented for a "beer can"
geometry in which a close fitting conducting tube
surrounds the beam right up to the target. A beam
envelope equation is used to derive scaling laws for the
effect of the backstreaming ions on the focal spot size at
the target.

2 TARGET GEOMETRY AND MODEL

We will model the "beer can" geometry shown in
Figure 1. In this target arrangement, a conducting tube
with the same radius as the electron beam is connected to
the target. The presence of the tube limits the space
charge depression of the beam which will in turn reduce
the emitted ion current.
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Fig. 1. "Beer can" geometry proposed to reduce the space
charge depressed potential of the beam which
would reduce the backstreaming ion current.

We will assume that the target surface is sufficiently
rich in ions that flow will be space charge limited. The
steady state emission is determined by Poisson's equation
for the electrostatic potential (in c.g.s. units)

0%® = -4mp (1)

where p is the sum of the beam's charge density and the
density of the emitted ions. Since the target (and the tube)
are assumed to be grounded, we may use the conservation
of energy to obtain the ion velocity as

v =-2ed /M [2]

where M is the ion mass and e istheion charge. Theion
charge density is given by

o = J(r)/vi [3]
where J(r) istheion current density.
Equation [1] is two dimensional (r and z). A great
simplification is made possible by choosing the beam
profile to be of the form

Pp = _po‘]o(ar) [4]

where Jg is the zeroth order Bessel function and
a =Xy /a. Hereais the radius of the beer can, Xy, is

the first root of Jg and -pg is the on-axis charge density of
the beam.
Let us seek solutions which have the following form:

(r,2) = ~4(2)3;(ar) [5]



3(r) = A3, " (ar) [6]

where (z) and A are to be determined.
Substitution of Equations [2] through [6] into Equation
[1] yields

_dy __4mp,  4m\, M 1
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[7]

where we have defined a dimensionless axial coordinate
(=az. If we multiply Equation [7] by dy/d{ we can
obtain afirst integral

oawd  , 8™,  16m\, M |
=y’ - — 8
HeB Y v \/ZGW [8]

where we have used the condition for space charge limited
emission to eliminate the constant of integration (i.e.,
dy/dZ=0 at the emitting surface (=0 where =0).

To proceed further we define a dimensionless variable
Q and a dimensionless constant | as

Q= \/azl,ll/ST[pO 9]

167\, /M 0o 0~

M= \oebhmp, 0

With these definitions we may solve Equation [8] as (we
choose the positive root since we expect Y to increase

[10]

with 2)
E Lo ST v [11]
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We expect that as { —» o, Q will approach a finite
asymptotic value corresponding to the space charge
depressed potential of the beam. Thus yu must have a
value such that the integral in Equation [11] - o as
Q - Q the asymptotic value. We note that the radical in
the denominator of Equation [11] must be rea for a
physical solution to exist. Let us find its minimum.
Defining the radicand as X we have

x=Q-Q+pu [12]
ad
dy/dQ=30%-1=0 [13]
so that
Q, =+41/3. [14]

From the derivative of Equation [13] we see that the
positive root of Equation [14] will correspond to a
minimum of the radicand

Xoin = =21 373+ 1. [15]

Note that if this minimum value is greater than zero
then the integral will be finite regardless of the upper limit
of integration in Equation [11] and thus will not be a
solution. Therefore p must have a value such that

Xmin = 0. That is, we must have

p=2/33 and Q=0Q,=1/+3. [16]

Using this result we can solve Equation [11]. The
solution is shown in Figure 2. Note that the potential
changes rapidly over adistance of order the beam radius.
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Fig. 2. Solution of Equation [11].  is plotted vs. Q.

With the solutions given by equation [16] we can
immediately determine the asymptotic potentia as

Y - Yoo =87Tp0/302 [17]
and the ion current constant as
2 2 2 /2 3/2
. a / e (B, (1 0 ¥max [18]
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Note that the final result for the ion current resembles the
classical Child-Langmuir law for a diode with a potential
given by the beam potential and an "A-K gap" given by
the beam radius.

By integrating over the beam profile we find that

[032.041,, (kV)
0131()(01)C

-4
l»Umax - 3 x [19]

and that the asymptotic neutralization fraction of the beam
by theionsis

Pion (112 = ©) 1 |Pyean ()] =1/ 943 = 0.064. [20]

The potential gives rise to an asymptotic ion speed given
through Equation [2] as

Vimex = 2.48x10° 1 Z/ A (cm/sec)

where Z and A are the charge state and atomic number of
the ions respectively.

[21]



3 FOCUSING EFFECTS OF
BACKSTREAMING IONS

Examination of Equation [21] reveals that substantial
motion of backstreaming ions is possible during a single
electron beam pulse. For example for a 4 kA beam
protons will propagate approximately 50 cm upstream
after 60 ns, singly charged carbon ions would travel 14 cm
in the same time and singly charged tantalum ions (a
typical target material) would move only about 3.5 cm.

These propagation distances are comparable to the focal
length of the final focusing lens in radiography systems
and so would be expected to exert a substantial focusing
force on the electron beam.

An estimate of the effects of these ions can be obtained
by using an envelope equation for the beam. By
computing the radial electric field produced by theions and
averaging the product of this field with radius over the
beam profile it is possible to derive a simple equation for
the rms (root mean square) radius of the beam [3].
Assuming a uniform distribution for the beam profile and
using the Lapostolle emittance (E) we can then obtain an
equation for the edge radius R of the beam (without space
charge) as
E*  2fl

R® yB%IoR

[22]

where fy, is the neutralization fraction (given in the "beer
can" model by Equation [20]), lo=mc3/e=17 kA and E is
the Lapostolle emittance.

As the ions propagate upstream we expect the type of
behavior shown in Figure 3ato occur. Equation [22] can
be solved for different "slices' of the beam corresponding
to different distances from the head of the beam. Each
slice will experience an ion column of different length and
so will have a different history of R vs. z. If the head of
the beam is arranged to hit the target at a waist then ion
backstreaming will initially lead to a smaller spot on
target as the additional electrostatic focusing in close
proximity to the target pinches the beam. However, as
the ions move further upstream this pinching will occur
progressively farther upstream leading to a divergent beam
at the target. The behavior of the focal spot at the target
as a function of time is shown in Figure 3b. The time at
which the spot radius egquals Rg, the spot size at the head
of the beam is the disruption time 1g.

By numerically solving a dimensionless, scaled version
of Equation [22] the length of uniform ion column
required to disrupt the focal spot isfound to be

z, = R\ myB°l, [ 1, [23]
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Fig. 3. (a) Trajectories of different beam "dlices’. (b)
Radius as a function of time at the target plane.

and the disruption time follows from Equations [21] and
[23] as

T, =2,V =29.5R yB2A/ 1,2 /1 (nS). [24]

For example if Rg=0.05 cm, 1=2kA and y=12.7 we find
that z,=3.64 cm and 13=10.4 nsfor proton emission.

4 CONCLUSIONS

We have provided an exact analytic solution to the
problem of the space charge limited flow of ions off the
surface of atarget surrounded by atight fitting cylindrical
tube of the same diameter as the electron beam. The
effects of these ions have been treated with an envelope
equation and the scaling laws for the disruption of the
focal spot have been derived.
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